Predict with Rust

1. Install.

[dependencies] modelfox = { git = "https://github.com/modelfoxdotdev/modelfox" }

2. Predict.

First, import the modelfox library and load the model file. Then, make an object with info for a new patient that matches the CSV, excluding the diagnosis column. Finally, call predict and print out the result.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
fn main() { // Load the model from the path. let model: modelfox::Model = modelfox::Model::from_path("heart_disease.modelfox", None).unwrap(); // Create an example input matching the schema of the CSV file the model was trained on. // Here the data is just hard-coded, but in your application you will probably get this // from a database or user input. let input = modelfox::predict_input! { "age": 63.0, "gender": "male", "chest_pain": "typical angina", "resting_blood_pressure": 145.0, "cholesterol": 233.0, "fasting_blood_sugar_greater_than_120": "true", "resting_ecg_result": "probable or definite left ventricular hypertrophy", "exercise_max_heart_rate": 150.0, "exercise_induced_angina": "no", "exercise_st_depression": 2.3, "exercise_st_slope": "downsloping", "fluoroscopy_vessels_colored": 0.0, "thallium_stress_test": "fixed defect", }; // Make the prediction! let output = model.predict_one(input, None); // Print the output. println!("Output: {:?}", output); }